Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds
نویسندگان
چکیده
This paper presents a method for extracting features for illustrating stone tools. Features are detected from unorganized point clouds obtained by a 3D laser scanner. The curvature of each point in the point clouds is estimated by local surface fitting algorithm and used for detecting potential feature points. Feature lines are extracted by directionally growing algorithm. The main idea of our method is to extract feature lines using principal curvatures and principal directions of the potential feature points along the axis directions and to merge all extracted lines. The detected features are modified by specific knowledge on illustrating stone tools.
منابع مشابه
Adaptive extraction and representation of geometric structures from unorganized 3D point sets
The primary emphasis of this thesis concerns the extraction and representation of intrinsic properties of three-dimensional (3D) unorganized point clouds. The points establishing a point cloud as it mainly emerges from LiDaR (Light Detection and Ranging) scan devices or by reconstruction from two-dimensional (2D) image series represent discrete samples of real world objects. Depending on the ty...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملModeling of rapeseed at maturity stage using 3D unorganized point clouds and digital images
Creating 3D plant models is often a difficult and laborious task. To make it easier and more natural, the integration of digital images and 3D unorganized point clouds from a digitizer provides a promising approach for rapeseed model generation. In the present study, 3D unorganized point clouds and digital images were incorporated in the generation of complex models of rapeseeds at maturity sta...
متن کاملCurb-based Street Floor Extraction from Mobile Terrestrial Lidar Point Cloud
Mobile terrestrial laser scanners (MTLS) produce huge 3D point clouds describing the terrestrial surface, from which objects like different street furniture can be generated. Extraction and modelling of the street curb and the street floor from MTLS point clouds is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline for...
متن کاملPPFNet: Global Context Aware Local Features for Robust 3D Point Matching
We present PPFNet Point Pair Feature NETwork for deeply learning a globally informed 3D local feature descriptor to find correspondences in unorganized point clouds. PPFNet learns local descriptors on pure geometry and is highly aware of the global context, an important cue in deep learning. Our 3D representation is computed as a collection of point-pair-features combined with the points and no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012